28
Hello World II (Ouster, Blinker and Dataspeed: Input and Feedback)

Approximate Time Investment: 1-2 hours

Now that we covered Hello World I, we will move onto Hello World II where we will incorporate a feedback
loop with input and output. We will create an “alarm” system where an input (motion detected by the Ouster)
will trigger an output (blinkers flash when motion is detected by the Ouster).

We have done our sanity check that the Ouster OS2 is working using Ouster Studio before but now we will
visualize the OS2’s feed using ROS?2 first. It is recommended to read through the documentation by Ouster in

their official repository at the link below.

Official Ouster ROS2 Drivers: https://github.com/ouster-lidar/ouster-ros/tree/ros2

1. Clone the ouster-ros repository into our workspace’s src folder by running the following commands in a
new terminal.

cd ros2_ws/src
git clone -b ros2 --recurse-submodules https://github.com/ouster-lidar/ouster-ros.git

a. Note that the clone command for the ouster-ros driver is different from the previous packages.
As 0f 9/23/2025, the Ouster ROS driver repository supports a variety of ROS versions. The “-b
ros2 --recurse-submodules” part of the clone command ensures that we are only cloning the
ROS2 branch of the repository. It is good practice to look through the official documentation of
the drivers in this documentation rather than relying too heavily on the launch commands given
here.

29

-
() {at Home / ros2_ws / src : Q e ||| = = o X
Name Size Modified
O Recent
. arena_camera_node 4items 27Feb2023 %
% Starred
Gt Home . build 9items 23Aug W
[Desktop . dbw_ros gitems 20Aug
[® Documents ! _
.lnstall 19items 23Aug W
¢ Downloads
.log 11items 23Aug W
J1 Music
& Pictures . mkz_blinker 6items 21Aug W
= Videos . novatel_gps_driver 4items Yesterday ¥
7% Trash . ouster_alarm 10items 23Aug %
+ Other Locations t gitems 23Aug %
. velodyne 9items 10Sep W
€) 0s5-992315000023-metadata.json 9.8kB 23Aug W
L y

Figure 1: Cloned ouster-ros in our src folder

2. Build our workspace and sanity check that we can visualize the OS2 in ROS2’s Rviz gui.
a. In our terminal, go back one directory to ros2_ws and build our workspace as we’ve done before.

cd ..
colcon build --symlink-install --cmake-args -DCMAKE BUILD TYPE=Release

b. Note that the build command is different from when we built our workspaces before. The ouster-
ros driver depends on CMake to build the package along with libcurl. If there are issues with
building the workspace there are likely missing dependencies and packages. Refer to the official
Ouster ROS2 driver webpage the requirements section.
https://github.com/ouster-lidar/ouster-ros/tree/ros2

|

Starting
Finished
Starting
Finished
Starting
Finished
Starting
Starting
Finished
Finished
Finished
Finished
Finished
Starting
Starting
Finished
Finished
Starting
Finished
Finished
Finished

jeffoh@trc: ~/ros2_ws
jeffoh@trc: ~/ros2_ws 80x24

> velodyne_pointcloud

ouster_sensor_msgs [2.28s]

> ouster_ros

novatel_gps_msgs [2.41s]
novatel gps_driver
ds_dbw_msgs [2.59s]

> ds_dbw_can
> mkz_blinker

ouster_alarm [3.36s]
velodyne driver [1.48s]
velodyne pointcloud [1.41s]
novatel gps _driver [1.28s]
ds_dbw_can [1.195]

> ds_dbw_joystick demo
> velodyne

ouster_ros [1.57s]
ds_dbw_joystick demo [0.

. ds_dbw

velodyne [
ds_dbw [O.
mkz_blinke

Summary: 16 packages finished [5.55s]

s |

Figure 2: Note ouster ros and ouster sensor msgs have been built

31

In addition to the base ROS installation, the following ROS packages are
required:

sudo apt install -y \ 1=
ros-$ROS_DISTRO-pcl-ros \
ros-$ROS_DISTRO-tf2-eigen N\
ros-$ROS_DISTRO-rviz2

where $ROS_DISTRO can be either rolling, humble, iron, jazzy Or
kilted .

Note

Installing ros-$ROS_DISTRO-rviz package is optional in case you didn't
need to visualize the point cloud using rviz but remember to always set
viz launch argto false .

The following packages are also required

sudo apt install -y \
build-essential \
libeigen3-dev N\
libjsoncpp-dev \
libspdlog-dev X
libcurl4-openssl-dev N
cmake
python3-colcon-common-extensions

e

Note
You may choose a different ss/backend for the curl library such as

libcurl4-gnutls-dev OI libcurl4-nss-dev

Note
To use the PCAP replay mode you need to have 1ibpcap-dev installed

Figure 3: Requirements section from the official Ouster ROS2 driver github

c. Close the terminal and open a new one. This is to ensure the newly built workspace is sourced.
We can check our package list by running:

ros2 pkg list

The Ouster packages should be in the list.

d. Launch the Ouster OS2 through ROS. Recall that when we did our sanity check using Ouster
Studio we wrote down our serial number. The serial number can also be found by running the
following command.

avahi-browse -art | grep os-

jeffoh@trc: ~

jeffoh@trc: ~ 80x24
$ avahi-browse -art | grep os-
= [

hostname 992315000023.1ocal]

txt = ["fw=ouster image-prod-aries-v2.5.1+20230426041400" "sn=992315000023
'Pn=840-104704-C"]
hostname = [992315000023.1ocal]
txt = ["fw=ouster image-prod-aries-v2.5.1+20230426041400" "sn=992315000023
pn=840-104704-C"]
0

9

Figure 4: Output of “avahi-browse -art | grep os-" showing the OS2’s serial number

32

Our serial # 15 992315000023 so we will launch the OS2 per the official documentation in the repo with

the following command.

ros2 launch ouster_ros sensor.launch.xml sensor_hostname:=0s-992315000023.local

Rviz should launch and you will be able to visualize the OS2. It may take a couple seconds.

Toect frfocssCamers Measure Drosetstinate £ DCorose G PubishPoit 4

ROSTime: 175822157351 | ROS Elapsed: 2825 WallTime: 175822157354 | WallElapsed: 28.25 Experimental

Reset 3tfps

Figure 5: Ouster OS2 visualiztion through ROS2’s Rviz

We have completed our OS2 ROS sanity check.

33
3. Download and build the ouster alarm package.
a. Download and place the ouster alarm package/folder in our workspace’s src folder, then colcon
build. Follow the same instructions for this as we did for the mkz_blinker package in Hello
World L.
ouster_alarm

((st Home / ros2_ws / src : Q 8 v | = = o X
@ Recent Name Size Modified
. arena_camera_node 4items 27Feb2023 +Yr
% Starred
Gt Home . build 9items 23Aug W
[Desktop . dbw_ros 8items 20Aug Yr
[® Documents L
. install 19items 23Aug W
¢ Downloads
.log 11items 23Aug %
J1 Music
. mkz_blinker 6 it 21A
& Pictures . = olems ug
3 Videos . novatel_gps_driver 4items Yesterday ¥%
7 Trash n ouster alarm 10items 23Aug W
+ Other Locations . ouster-Fos 8items 23Aug %
. velodyne 9items 10Sep ¥
() 0s5-992315000023-metadata.json 9.8kB 23Aug W

Figure 6: ouster alarm is in our workspace’s src folder

34

jeffoh@trc: ~/ros2_ws = () €

. jeffoh@trc: ~/ros2_ws 80x24
Starting >>> velodyne_pointcloud
Finished < ouster_sensor_msgs [2.
Starting ouster_rc

Finished <<< novatel_gps_ms
Starting >

Finished

Starting >

Starting

Finished - 3

Finished <<< velodyne_driver [1.
Finished <« velodyne_pointcloud [
Finished - wovatel_gps_driver
Finished <<< ds_dbw_can [1.195]
Starting > ds_dbw_joystick_demo
Starting > velodyne

Finished <<< ouster_ros [1.57s]
Finished ds_dbw_joystick_demo [€
Starting ds_dbw

Finished <<< velodyne [0.48s
Finished < bw [0.

Finished - mkz_blinker

Summary: 16 packages finished [5.55s]

9

Figure 7: ouster alarm successfully built

4. Run the Ouster Alarm package.

a. Place the keys inside the car and press the ENGINE START STOP button without pressing the
brake pedal. This will turn the ignition on but not the engine.

b. (Optional) We will need three terminals for this exercise. Terminator is a terminal emulator that
allows you to have multiple terminal sessions open on one window. We will work with
Terminator for this and exercises going forwards. Install terminator by opening a new terminal
and typing the following command:

sudo apt install terminator

The new terminals can be opened in the window by right clicking and splitting vertically or
horizontally.

c. Interminal #1 we will launch the Dataspeed DBW package as we did before in Hello World 1.

ros2 launch dbw_ford can dbw.launch.xml # Terminal 1

In terminal #2 we will enable DBW and check that it is enabled.

ros2 topic pub --once /vehicle/enable std msgs/msg/Empty "{}" # Terminal 2 enable DBW
ros2 topic echo /vehicle/dbw_enabled --once # Terminal 2 check that DBW is enabled.

35
In terminal #3 we launch the Ouster Driver. Rviz will open up and show the point cloud
visualization once again.

ros2 launch ouster ros sensor.launch.xml sensor hostname:=0s-992315000023.local

In terminal #2 we will launch our ouster alarm package with the following commands. All four

lines can be copy and pasted. The backslash “\” in a Linux terminal can be used to continue the single command
line.

ros2 launch ouster alarm alarm.launch.py \
points_topic:=/ouster/points \
misc_topic:=/vehicle/misc_cmd \
turn_signal mode:=RIGHT

jeffoh@trc: ~ S &) &
i

B jeffoh@trc: ~ 47x21

jeffoh@trc: ~46x21

B jeffoh@trc: ~95x14

Figure 8: Our launch commands running. Terminal 1-3 starting from the top left going clockwise.

d. Now walk near the vehicle and the Ouster. Once it detects your motion, the right blinker will
flash. The Ouster OS2 has a vertical FOV of 22.5 degrees, so you may need to wave your hand
up high for it to detect motion. The default radius of detection is set to 5 ft. The result should be
similar to this video: ouster_alarm (YouTube)

36
Summary

We have completed Hello World II and implemented the Ouster OS2 AND Dataspeed to create a package that
receives an input (motion detected by lidar) and creates an output (blink the right turn signal). The code
voxelizes the lidar cloud points and determines changes in voxels between frames, and when the change in
frames exceeds a certain threshold, the turn signal activates. We can see from the rqt graph below that the
Ouster topic publishes to our proximity alarm which publishes to our vehicle topic which sends the message to
enable the right blinker to the vehicle’s computer.

1 F .k = -

Figure 9: Voxel representation of a pine tree. Our alarm system converts lidar cloud points into voxels.

rqt_graph__RosGraph - rqt S B €5
#Node Graph D® -0
£ | Nodes only v ||/ / Bl ® &

Group: |2 | Namespaces V| Actions v/ tf v Images | ! Highlight v/ Fit |[Z/

Hide: v Deadsinks v Leaftopics v Debug V! tf V! Unreachable v Params

Ivehicle

Jouster

fousteripoints Jouster_proximity_alarm Ivehicle/misc cmd

—(
Jcan_bus_d b @

Figure 10: rqt_graph of our Hello World II

37

#!/usr/bin/env python3

alarm_node.py

import math

import time

from typing import Optional, Set, Tuple

import numpy as np

import rclpy
from rclpy.node import Node
from rclpy.qos import QoSProfile, QoSReliabilityPolicy, QoSHistoryPolicy

from sensor_msgs.msg import PointCloud2
from sensor_msgs_py import point_cloud?2 as pc2

Dataspeed / Ford DBW: use MiscCmd for turn signals on /vehicle/misc_cmd
from dbw_ford msgs.msg import MiscCmd, TurnSignal, ParkingBrakeCmd

class OusterProximityAlarm(Node):
Detect motion within a small cylindrical ROI around the LiDAR by comparing
voxel occupancy between consecutive frames. On motion, publish a turn-signal
command via dbw_ford msgs/MiscCmd for a fixed hold duration.

Assumes the vehicle is stationary. If ego moves, you should compensate using odom/IMU.

nmn

Logical mapping we use internally; matches common enum values
ENUM = {'NONE" 0, 'LEFT": 1, 'RIGHT": 2, 'HAZARD": 3}

def init (self) -> None:
super(). _init (‘ouster proximity alarm')

#H e Parameters ----------
self.declare parameter("points_topic', '/ouster/points')
self.declare_parameter('misc_topic', '/vehicle/misc_cmd') # where DBW listens

Figure 11: alarm_node.py in our ouster alarm package

alarm_node.py code explanation: Our alarm_node.py code is a node that subscribes to the Ouster OS2’s
PointCloud2 messages, then the cloud points in a cylinder around the sensor and detects motion by comparing
new voxels to old voxels between frames. When the new voxel fraction exceeds our threshold, the DBW turn
signal command is published at a fixed rate for a certain duration, then turns the signal off and enforces a short
cooldown before retriggering.

38

from launch import LaunchDescription

from launch.actions import DeclareLaunchArgument
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node

from ament index python.packages import get package share directory
import os

def generate launch description():
pkg share = get package share directory('ouster alarm')
default params = os.path.join(pkg_share, 'config', 'alarm.yaml')

return LaunchDescription(|
DeclareLaunchArgument('points_topic', default value='/ouster/points'),
DeclareLaunchArgument('misc_topic', default value='/vehicle/misc_cmd'),
DeclareLaunchArgument('radius_feet', default value='5.0"),
DeclareLaunchArgument('turn_signal mode', default value='"RIGHT"),

optional: allow overriding the params file from CLI
DeclareLaunchArgument('misc_topic', default value='/vehicle/misc_cmd'),

Node(
package='ouster alarm’,
executable='alarm_node',
name='ouster proximity alarm’,
parameters=|
{
'points_topic': LaunchConfiguration('points_topic'),
'misc_topic': LaunchConfiguration('misc_topic'),
'radius_feet': LaunchConfiguration('radius_feet'),
'turn_signal mode'": LaunchConfiguration('turn_signal mode'),

2

LaunchConfiguration('params_file'),

1,

output='screen’,

D

Figure 12: Code for our alarm_launch.py file.

alarm_launch.py code explanation: For Hello World II we created a launch file so that we can create launch
parameters (the points_topic:=/ouster/points \ misc_topic:=/vehicle/misc_cmd \ turn_signal mode:=RIGHT in
our launch command). The launch file declares command line interface arguments for the lidar points topic,
DBW misc topic, detection radius and turn signal mode then starts the ouster alarm/alarm_node with the
declared parameters.

